fMRI Responses of Alzheimer’s Disease and Mild Cognitive Impairment Patients during Target Detection

Moataz Assem¹,², Meltem Hale Alpsan³, Esin Karahan¹, Ali Bayram⁴, Başar Bilgiç⁵, Hakan Gürvit⁵, Ahmet Ademoglu¹,⁶, Tamer Demiralp⁷

(1) Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey (2) Faculty of Medicine, Alexandria University, Alexandria, Egypt (3) Anadolu Saglik Group, Istanbul, Turkey (4) Faculty of Engineering and Natural Sciences, Uskudar University, Istanbul, Turkey (5) Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey (6) Istanbul Sehir University, Istanbul, Turkey (7) Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey

INTRODUCTION

- Oddball target detection paradigms elicit systematic widespread fMRI brain activations²³⁴ and only one study demonstrates how these activations are affected in Mild Cognitive Impairment (MCI) (4) and none for Alzheimer’s Disease (AD).
- This study investigates the differences in activations among healthy subjects, MCI and AD patients in an auditory oddball event related fMRI experiment.
- We also aim to investigate studies [5] that report areas of increased activations in pre-MCI and MCI stages and their subsequent affection in AD.

METHODS

- Subjects: 10 healthy - 20 MCI – 11 AD
- Paradigm: Auditory Standard Stimuli (1000Hz, 80%) and Target Stimuli (1500Hz, 20%). Subjects are instructed to respond with a unilateral button press to Target Stimuli.
- Imaging: BOLD images (EPI, TR 2.4 s, 64x64 matrix, FOV 230 mm) - Structural image (T1, 1.25 x 1.25 x 1.2 mm voxel size) using a 1.5 Tesla Philips System.
- Preprocessing (SPM8): Realignment, slice timing, motion correction, co-registration, normalization (MN152, 3 mm), smoothing (Gaussian Kernel of FWHM 9 mm).
- Subject level Statistical Analysis (SPM8): Standard stimulus (single regressor) Target Stimuli (two regressors: correct and wrong responses). Motion correction parameters and time derivatives of hemodynamic response function were included in general linear model. Contrasts used: Main effect of correct Target Stimuli relative to Standard Stimuli.
- Group level Statistical Analysis (SPM8): Contrast images used as inputs for an ANOVA analysis of the 3 groups.

RESULTS

Common Areas affected in MCI and AD patients relative to Controls
- Frontal Lobe
 - Bilateral Ventro-Lateral Prefrontal Cortex (VLPCF) within the inferior frontal gyrus
 - Left Dorsal-Lateral Prefrontal Cortex (DLPFC) within middle and superior medial frontal gyri
- Right Superior Frontal Gyrus
- Right Supplementary Motor Area (SMA)
- Anterior Cingulate Cortex (ACC)
- Temporal Lobe: Right Superior Temporal gyrus
- Parietal Lobe: Right Supra-marginal gyrus
- Occipital Lobe: Right Cuneus, Fusiform and Lingual gyri

Discussion and Conclusion

- Our results are the first to document AD patients fMRI activations in an auditory target detection task.
- Our results supports the only study [4] that documents the areas implicated in MCI.
- AD show similar but stronger patterns as MCI patients of decreased activations relative to healthy elderly subjects.
- Prominent differences of AD seem to implicate the caudate nuclei, posterior cingulate gyrus and left superior temporal gyrus.
- Our results support the studies [5] reporting that the same areas affected in AD demonstrate increased activations in pre-MCI stages.

REFERENCES

Figure 1. Groups comparisons for areas which show increased activity to Target Stimuli (with a correct response) relative to Standard Stimuli. Differences between Control and MCI subjects (Left), Control and AD subjects (Middle) and MCI and AD subjects (Right). p value uncorrected at 0.01. Voxels Ext Threshold at 10.

Areas exclusively affected in AD patients relative to MCI and Controls
- Temporal Lobe: Left Superior and Middle Temporal Gyri
- Parietal Lobe: Left Supra-marginal gyrus
- Posterior Cingulate Cortex
- Occipital Lobe: Right Precuneus
- Basal Ganglia: Bilateral Caudate Nuclei