Immunomodulation induced by Stereotactic Ablative Radiotherapy (SABR) in Oligometastatic Breast Cancer Patients as a source of predictive biomarkers

Murro Giampaolo, Furlan Carla, Martorelli Debora, Berretta Massimiliano, Millettlo Loredana, Del Conte Alessandro, Spazapani Simon, Comai Silvia, Rizzo Aurora, Trovò Marco, Doce Riccardo

1 Department of Translational Research, I.R.C.C.S. National Cancer Institute Aviano (PN), Italy
2 Department of Radiation Oncology, I.R.C.C.S. National Cancer Institute Aviano (PN), Italy
3 Department of Medical Oncology, I.R.C.C.S. National Cancer Institute Aviano (PN), Italy
4 Department of Medical Oncology, Padova University General Hospital, Padua, Italy

12th CIMT annual meeting: "Next waves in Cancer Immunotherapy". May 8-9, 2018.

Background

- Improvements in the early detection of distant disease allow the diagnosis of isolated metastases, a clinical condition defined as oligometastatic.
- Stereotactic Ablative Radiotherapy (SABR) is a novel technique based on the delivery of very high radiation doses to the lesions.
- In oligometastatic lung cancer patients, the use of SABR favors the local control of the treated lesions minimizing normal tissue damage.
- A spontaneous distant tumor regression after SABR was documented in lung cancer, suggesting a specific involvement of the anti-tumor immune response.

- SABR may contribute to break local tolerance and release tumor-associated antigens (TAAs), improving host anti-tumor immunity.
- Spontaneous anti-tumor CD8+ T cell responses against several TAAs have been described in Breast Cancer (BC) patients.

Aim of the study

SABR could induce a benefit in oligometastatic BC patients maybe involving host immune system. We thus intend to perform a careful immunomonitoring of oligometastatic BC patients treated with SABR.

TO EVALUATE SABR EFFECTS ON HOST ANTI-TUMOR IMMUNE RESPONSES

with particular attention to patients concomitantly treated with drugs acting through immune-modulating mechanisms, as Trastuzumab.

Study design

- Patient enrolment
 - ≤ 6 metastatic lesions (diagnosed by FDG-PET/CT)
 - controlled loco-regional disease
 - no brain metastases

- Follow up
 - Possible concomitant therapy:
 - hormonal-therapy and/or chemotherapies
 - steroids
 - Trastuzumab

Diagnosis

24th after the first SABR fraction
1 month after SABR
2 months after SABR

Patients’ characteristics

<table>
<thead>
<tr>
<th>N</th>
<th>Group</th>
<th>Site</th>
<th>Treatment</th>
<th>Disease status</th>
<th>Time interval (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>SABR</td>
<td>Liver</td>
<td>SABR alone</td>
<td>No recurrence</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>SABR</td>
<td>Liver</td>
<td>SABR alone</td>
<td>No recurrence</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>SABR</td>
<td>Liver</td>
<td>SABR alone</td>
<td>No recurrence</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>SABR</td>
<td>Liver</td>
<td>SABR alone</td>
<td>No recurrence</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>SABR</td>
<td>Liver</td>
<td>SABR alone</td>
<td>No recurrence</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>SABR</td>
<td>Liver</td>
<td>SABR alone</td>
<td>No recurrence</td>
<td>5</td>
</tr>
<tr>
<td>20</td>
<td>SABR</td>
<td>Liver</td>
<td>SABR alone</td>
<td>No recurrence</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>SABR</td>
<td>Liver</td>
<td>SABR alone</td>
<td>No recurrence</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>SABR</td>
<td>Liver</td>
<td>SABR alone</td>
<td>No recurrence</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>SABR</td>
<td>Liver</td>
<td>SABR alone</td>
<td>No recurrence</td>
<td>9</td>
</tr>
</tbody>
</table>

Sequences of selected epitopes

<table>
<thead>
<tr>
<th>Source</th>
<th>T cell epitope</th>
<th>Length</th>
<th>International CD8 epitope database</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHC class I</td>
<td>HIV-1 gag</td>
<td>10</td>
<td>IA1, IE1, IE2, IE3, IE4, IE5</td>
</tr>
<tr>
<td>MHC class II</td>
<td>HER2</td>
<td>10</td>
<td>IA1, IE1, IE2, IE3, IE4, IE5</td>
</tr>
<tr>
<td>MHC class III</td>
<td>CD80</td>
<td>10</td>
<td>IA1, IE1, IE2, IE3, IE4, IE5</td>
</tr>
<tr>
<td>MHC class IV</td>
<td>CD86</td>
<td>10</td>
<td>IA1, IE1, IE2, IE3, IE4, IE5</td>
</tr>
</tbody>
</table>

Decreased B cells and increased CD56bright NK cells percentage after SABR

Methods. Analysis by flow cytometry of:
- T and B lymphocytes
- NK cells
- regulatory T cells
- myeloid-derived suppressor cells

Survivin-derived epitope-specific T cells

Survivin-derived epitope-specific T cells

Increased Trastuzumab ADCC efficiency 24h after SABR

Methods. In vitro CalcuSyn-based assay to evaluate Trastuzumab-mediated ADCC using:
- HER2-positive MDA-MB-435 cell line as target
- 20 ng/ml Trastuzumab
- patient’s antibodies as effectors
- normalization of lysis percentages to 10,000 NK

Conclusions

- SABR treatment induced several immune-modulating effects in oligometastatic BC patients:
 - increased survivin-specific CD8+ T cells numbers
 - enhanced polyfunctional HER2-specific CD8+ T cells
 - reduced B cells and increased CD56bright NK cells (%
 - improved Trastuzumab ADCC activity
 - restored serum IL-8 levels (in comparison with healthy donors)

- FUTURE PERSPECTIVES
 - We intend to complete the study through:
 - the implementation of patients’ follow-up (total n=30)
 - the immunomonitoring during further follow-up (n=30 over 3 years)
 - the evaluation of host anti-tumor immune response contribution to the induction of a clinical response to SABR (at 3 years follow-up)

References